Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Environ Pollut ; 349: 123992, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631451

RESUMO

Achieving the United nations 2030 Sustainable Development Goals (SDGs) remains a significant challenge, necessitating urgent and prioritized strategies. Among the various challenges, air pollution continues to pose one of the most substantial threats to the SDGs due to its widespread adverse effects on human health and ecosystems. However, the connections between air pollution and the SDGs have often been overlooked. This study reveals that out of the 169 SDG targets, 71 are adversely impacted by air pollution, while only 6 show potential positive effects. In China, two major atmospheric nitrogen pollutants, ammonia and nitrogen oxides, resulted in an economic loss of 400 billion United States Dollar (USD) in 2020, which could be reduced by 33% and 34% by 2030, respectively. It would enhance the progress towards SDGs in China by 14%, directly contributing to the achievement of SDGs 1 to 6 and 11 to 15. This improvement is estimated to yield overall benefits totaling 119 billion USD, exceeded the total implementation cost of 82 billion USD with ammonia as the preferential mitigation target. This study underscores the importance of robust scientific evidence in integrated policies aimed at aligning improvements in environmental quality with the priorities of sustainable development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Desenvolvimento Sustentável , China , Poluição do Ar/prevenção & controle , Poluentes Atmosféricos/análise , Amônia/análise , Objetivos , Óxidos de Nitrogênio/análise , Humanos
2.
Nat Food ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565650

RESUMO

The potential of enhanced agricultural management practices to drive sustainability is rarely quantified at grassroots level. Here we analyse nitrogen use and loss in Chinese cropland, drawing from data collected in 2,238,550 sites in two national agricultural pollution source censuses from 2007 to 2017. We find an upswing of 10% in crop yields and an 8% reduction in nitrogen pollution during this period, owing to the promotion and adoption of various management practices (including the combination of organic and chemical fertilizers, straw recycling and deep placement of fertilizer). These practices have collectively contributed to an 18% increase in nitrogen use efficiency in the country. By fully embracing them, we project that annual cropland pollution could be further reduced by up to 1.4 Mt of nitrogen without compromising crop yields. Environmental and human health benefits are projected to consistently outweigh implementation costs in the future, with total benefits reaching US$15 billion.

4.
Nat Food ; 5(3): 230-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528241

RESUMO

Cropland fragmentation contributes to low productivity and high abandonment risk. Using spatial statistics on a detailed land use map, we show that 10% of Chinese croplands have no potential to be consolidated for large-scale farming (>10 ha) owing to spatial constraints. These fragmented croplands contribute only 8% of total crop production while using 15% of nitrogen fertilizers, leading to 12% of fertilizer loss in China. Optimizing the cropping structure of fragmented croplands to meet animal food demand in China can increase animal food supply by 19%, equivalent to increasing cropland proportionally. This crop-switching approach would lead to a 10% and 101% reduction in nitrogen and greenhouse gas emissions, respectively, resulting in a net benefit of US$ 7 billion yr-1. If these fragmented croplands were relocated to generate large-scale farming units, livestock, vegetable and fruit production would be increased by 8%, 3% and 14%, respectively, and reactive nitrogen and greenhouse gas emissions would be reduced by 16% and 5%, respectively, resulting in a net benefit of US$ 44 billion yr-1. Both solutions could be used to achieve synergies between food security, economic benefits and environmental protection through increased agricultural productivity, without expanding the overall cropland area.


Assuntos
Gases de Efeito Estufa , Animais , Agricultura , Produção Agrícola/métodos , Verduras , Nitrogênio/química
5.
Nat Commun ; 15(1): 401, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195574

RESUMO

Halving nitrogen pollution is crucial for achieving Sustainable Development Goals (SDGs). However, how to reduce nitrogen pollution from multiple sources remains challenging. Here we show that reactive nitrogen (Nr) pollution could be roughly halved by managed urban development in China by 2050, with NH3, NOx and N2O atmospheric emissions declining by 44%, 30% and 33%, respectively, and Nr to water bodies by 53%. While rural-urban migration increases point-source nitrogen emissions in metropolitan areas, it promotes large-scale farming, reducing rural sewage and agricultural non-point-source pollution, potentially improving national air and water quality. An investment of approximately US$ 61 billion in waste treatment, land consolidation, and livestock relocation yields an overall benefit of US$ 245 billion. This underscores the feasibility and cost-effectiveness of halving Nr pollution through urbanization, contributing significantly to SDG1 (No poverty), SDG2 (Zero hunger), SDG6 (Clean water), SDG12 (Responsible consumption and production), SDG14 (Climate Action), and so on.

6.
Environ Sci Technol ; 58(1): 449-458, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38130002

RESUMO

Nitrogen is an essential nutrient and a major limiting element for the ocean ecosystem. Since the preindustrial era, substantial amounts of nitrogen from terrestrial sources have entered the ocean via rivers, groundwater, and atmospheric deposition. China serves as a key hub in the global nitrogen cycle, but the pathways, sources, and potential mitigation strategies for land-ocean nitrogen transport are unclear. By combining the CHANS, WRF-Chem, and WNF models, we estimated that 8 million tonnes (Tg) of nitrogen was transferred into the ocean in 2017 in China, with atmospheric deposition contributing 1/3. About half variation of the offshore chlorophyll concentration was explained by atmospheric deposition. The Bohai Sea was the hot spot of nitrogen input, estimated at 214 kg N ha-1, while other areas were around 25-51 kg N ha-1. The largest contributors are agricultural systems (4 Tg, 55%), followed by domestic sewage (2 Tg, 21%). Abatement measures could reduce nitrogen export to the ocean by 43%, and mitigating ammonia and nitrogen oxide emissions accounts for 33% of this reduction, highlighting the importance of addressing air pollution in resolving ocean pollution. The cost-benefit analysis suggests the priority of nitrogen reduction in cropland and transport systems for the ocean environment.


Assuntos
Poluição do Ar , Ecossistema , Nitrogênio/análise , Meio Ambiente , Poluição Ambiental/análise , Poluição do Ar/análise , China , Monitoramento Ambiental
8.
Lancet Planet Health ; 7(8): e649-e659, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558346

RESUMO

BACKGROUND: Antibiotic resistance is an increasing global issue, causing millions of deaths worldwide every year. Particulate matter (PM)2·5 has diverse elements of antibiotic resistance that increase its spread after inhalation. However, understanding of the contribution of PM2·5 to global antibiotic resistance is poor. Through univariate and multivariable analysis, we aimed to present the first global estimates of antibiotic resistance and burden of premature deaths attributable to antibiotic resistance resulting from PM2·5 pollution. METHODS: For this global analysis, data on multiple potential predictors (ie, air pollution, antibiotic use, sanitation services, economics, health expenditure, population, education, climate, year, and region) were collected in 116 countries from 2000 to 2018 to estimate the effect of PM2·5 on antibiotic resistance via univariate and multivariable analysis. Data were obtained from ResistanceMap, European Centre for Disease Prevention and Control Surveillance Atlas (antimicrobial-resistance sources), and PLISA Health Information Platform for the Americas. Future global aggregate antibiotic resistance and premature mortality trends derived from PM2·5 in different scenarios (eg, 50% reduced antibiotic use or PM2·5 controlled to 5 µg/m3) were projected until 2050. FINDINGS: The final dataset included more than 11·5 million tested isolates. Raw antibiotic-resistance data included nine pathogens and 43 types of antibiotic agents. Significant correlations between PM2·5 and antibiotic resistance were consistent globally in most antibiotic-resistant bacteria (R2=0·42-0·76, p<0·0001), and correlations have strengthened over time. Antibiotic resistance derived from PM2·5 caused an estimated 0·48 (95% CI 0·34-0·60) million premature deaths and 18·2 (13·4-23·0) million years of life lost in 2018 worldwide, corresponding to an annual welfare loss of US$395 (290-500) billion due to premature deaths. The 5 µg/m3 target of concentration of PM2·5 in the air quality guidelines set by WHO, if reached in 2050, was estimated to reduce antibiotic resistance by 16·8% (95% CI 15·3-18·3) and avoid 23·4% (21·2-25·6) of premature deaths attributable to antibiotic resistance, equivalent to a saving of $640 (580-671) billion. INTERPRETATION: This analysis is the first to describe the association between PM2·5 and clinical antibiotic resistance globally. Results provide new pathways for antibiotic-resistance control from an environmental perspective. FUNDING: National Natural Science Foundation of China, Fundamental Research Funds for the Central Universities, Zhejiang University Global Partnership Fund, and China Postdoctoral Science Foundation.


Assuntos
Poluição do Ar , Material Particulado , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Mortalidade Prematura , China , Resistência Microbiana a Medicamentos
9.
Nat Food ; 4(9): 751-761, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653045

RESUMO

Reducing cropland ammonia (NH3) emissions while improving air quality and food supply is a challenge, particularly in China where there are millions of smallholder farmers. We tested the effectiveness of a tailored nitrogen (N) management strategy applied to wheat-maize cropping systems in 'demonstration squares' across Quzhou County in the North China Plain. The N-management techniques included optimal N rates, deep fertilizer placement and application of urease inhibitors, implemented through cooperation between government, researchers, businesses and smallholders. Compared with conventional local smallholder practice, our NH3 mitigation campaign reduced NH3 volatilization from wheat and maize by 49% and 39%, and increased N-use efficiency by 28% and 40% and farmers' profitability by 25% and 19%, respectively, with no detriment to crop yields. County-wide atmospheric NH3 and fine particulate matter (with aerodynamic diameter <2.5 µm) concentrations decreased by 40% and 8%, respectively. County-wide net benefits were estimated at US$7.0 million. Our demonstration-square approach shows that cropland NH3 mitigation and improved air quality and farm profitability can be achieved simultaneously by coordinated actions at the county level.


Assuntos
Amônia , Fazendeiros , Humanos , Grão Comestível , Fazendas , China , Triticum , Zea mays
10.
Environ Sci Technol ; 57(25): 9277-9286, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307015

RESUMO

The spatial variation and temporal trends of legacy and emerging per- and polyfluoroalkyl substances (PFASs) from 2011 to 2021 in agricultural soils of Eastern China, which is one of the largest PFAS production and consumption regions in the world, were evaluated. We found that PFOS concentration decreased by 28.2% during this period. Given that agricultural soils are sinks for persistent organic pollutants (POPs), our results suggest that the implementation of the Stockholm Convention and its indirect effects, combined with a voluntary phaseout, are effective for controlling PFOS pollution in agricultural soils in China. In addition, our results show that 19 out of 28 PFASs were detected in >40% of the samples, with concentrations being 17.6-1950 pg/g with a median of 373 pg/g. Further, legacy PFASs were major components, accounting for 63.8% of total PFASs. Based on the source appointment of PFASs via the Positive Matrix Factorization (PMF) model, the contribution ratio of consumer product industries has steadily increased from 6.10 to 26.2%, while both legacy and novel fluoropolymer industries have declined from 24.2 to 1.50 and 19.1 to 5.40%, further confirming the effectiveness of the Convention.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Solo , Fluorocarbonos/análise , China , Polímeros de Fluorcarboneto , Poluentes Químicos da Água/análise
11.
iScience ; 26(6): 106798, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37235053

RESUMO

Ensuring global food security and environmental sustainability is dependent upon the contribution of the world's hundred million smallholder farms, but the contributions of smallholder farms to global agricultural greenhouse gas (GHG) emissions have been understudied. We developed a localized agricultural life cycle assessment (LCA) database to calculate GHG emissions and made the first extensive assessment of the smallholder farms' GHG emission reduction potentials by coupling crop and livestock production (CCLP), a redesign of current practices toward sustainable agriculture in China. CCLP can reduce the GHG emission intensity by 17.67%, with its own feed and manure returning to the field as an essential path. Scenario analysis verified that greater GHG emission reduction (28.09%-41.32%) will be achieved by restructuring CCLP. Therefore, this mixed farming is a mode with broader benefits to provide sustainable agricultural practices for reducing GHG emissions fairly.

12.
Nat Food ; 4(4): 294-304, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37117545

RESUMO

Maintaining food production while reducing agricultural nitrogen pollution is a grand challenge under global climate change. Yet, the response of global agricultural nitrogen uses and losses to climate change on the temporal and spatial scales has not been fully characterized. Here, using historical data for 1961-2018 from over 150 countries, we show that global warming leads to small temporal but substantial spatial impacts on cropland nitrogen use and losses. Yield and nitrogen use efficiency increase in 29% and 56% of countries, respectively, whereas they reduce in the remaining countries compared with the situation without global warming in 2018. Precipitation and farm size changes would further intensify the spatial variations of nitrogen use and losses globally, but managing farm size could increase the global cropland nitrogen use efficiency to over 70% by 2100. Our results reveal the importance of reducing global inequalities of agricultural nitrogen use and losses to sustain global agriculture production and reduce agricultural pollution.


Assuntos
Mudança Climática , Nitrogênio , Agricultura/métodos , Aquecimento Global , Produtos Agrícolas
13.
Nature ; 616(7955): 96-103, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813965

RESUMO

Rapid demographic ageing substantially affects socioeconomic development1-4 and presents considerable challenges for food security and agricultural sustainability5-8, which have so far not been well understood. Here, by using data from more than 15,000 rural households with crops but no livestock across China, we show that rural population ageing reduced farm size by 4% through transferring cropland ownership and land abandonment (approximately 4 million hectares) in 2019, taking the population age structure in 1990 as a benchmark. These changes led to a reduction of agricultural inputs, including chemical fertilizers, manure and machinery, which decreased agricultural output and labour productivity by 5% and 4%, respectively, further lowering farmers' income by 15%. Meanwhile, fertilizer loss increased by 3%, resulting in higher pollutant emissions to the environment. In new farming models, such as cooperative farming, farms tend to be larger and operated by younger farmers, who have a higher average education level, hence improving agricultural management. By encouraging the transition to new farming models, the negative consequences of ageing can be reversed. Agricultural input, farm size and farmer's income would grow by approximately 14%, 20% and 26%, respectively, and fertilizer loss would reduce by 4% in 2100 compared with that in 2020. This suggests that management of rural ageing will contribute to a comprehensive transformation of smallholder farming to sustainable agriculture in China.


Assuntos
Distribuição por Idade , Agricultura , Fazendeiros , Fazendas , Segurança Alimentar , População Rural , Desenvolvimento Sustentável , Humanos , Agricultura/economia , Agricultura/educação , Agricultura/métodos , Agricultura/organização & administração , China , Fazendeiros/educação , Fazendeiros/estatística & dados numéricos , Fazendas/economia , Fazendas/organização & administração , Fazendas/estatística & dados numéricos , Fazendas/tendências , Fertilizantes/análise , Fatores Etários , Segurança Alimentar/economia , Segurança Alimentar/métodos , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências , População Rural/estatística & dados numéricos , População Rural/tendências , Eficiência , Poluentes Ambientais
15.
Nature ; 613(7942): 77-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600068

RESUMO

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Assuntos
Produção Agrícola , Produtos Agrícolas , Poluição Ambiental , Nitrogênio , Solo , Humanos , Análise Custo-Benefício , Ecossistema , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Produção Agrícola/economia , Produção Agrícola/métodos , Produção Agrícola/tendências
16.
Environ Pollut ; 316(Pt 2): 120610, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356887

RESUMO

Nitrogen use efficiency (NUE, defined as the fraction of N input harvested as product) is an important indicator to understand nitrogen use and losses in croplands as an element of determining sustainable food production. China, as the country with the largest amount of nitrogen fertilizer use globally, research into NUE consistently finds it to be much lower than that in developed countries. Understanding the driving forces of the underlying causes of this low NUE is thus crucial to improve nitrogen use and reduce losses in China. Here we applied the CHANS model to estimate cropland NUE for over 2800 counties in China for the year 2017. Results showed that in most counties NUE ranged between 20% and 40%, while an NUE >50% was mainly found in Northeastern China, likely as a result of large-scale, modern agriculture operations. The source of N input and crop types significantly affected NUE in our assessment. Nitrogen deposition, straw recycling, and biological nitrogen fixation (BNF) could improve NUE, while chemical nitrogen fertilizer and manure inputs reduce NUE. Grain crops have a much higher NUE compared to vegetables, which are often over-fertilized. Moreover, NUE in Southern China is strongly influenced by natural factors such as temperature and precipitation. Specifically, NUE in the Yangtze River Delta (eastern coastal region of China) is associated with socio-economic factors including GDP and the degree of urbanization, while in North-central China, NUE is mainly determined by nitrogen input sources. These examples illustrate that approaches aiming at improving NUE need to be location-specific with consideration of multiple natural and socioeconomic factors.


Assuntos
Fertilizantes , Nitrogênio , Nitrogênio/análise , Agricultura/métodos , Produtos Agrícolas , Esterco , China
18.
Environ Sci Technol ; 56(14): 9915-9923, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35621262

RESUMO

Farm size affects nitrogen fertilizer input and agricultural practices, which are key determinants of ammonia (NH3) emissions from croplands. However, the degree to which NH3 emissions are associated with changes in farm size is not well understood yet despite its crucial role in achieving agricultural sustainability in China, where agricultural production is still dominated by smallholder farms. Here we provide a first analysis of the relationship between farm size and NH3 emissions based on 863 000 surveys conducted in 2017 across China. Results show that NH3 emissions (kg ha-1) on average decrease by 0.07% for each 1% increase in average farm size. This change occurs mainly due to a reduction in nitrogen fertilizer use and the introduction of more efficient fertilization practices. The largest reduction in NH3 emissions is found in maize, with less pronounced changes in rice cultivation, and none for wheat production. Overall lower NH3 emissions factors can be observed in the north of China with increasing farm size, especially in the northeast, the opposite pattern was found in the south. National total NH3 emissions could be approximately halved (1.5 Tg) in a scenario favoring a conversion to large-scale farming systems. This substantial reduction potential highlights the potential of such a transition to reduce NH3 emissions, including benefits from a socioeconomic point of view as well as for improving air quality.


Assuntos
Amônia , Fertilizantes , Agricultura , China , Produtos Agrícolas , Fazendas , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA